Категория: Системы наблюдения и организации воздушного движения

Математическая модель подтверждения достоверности сообщений АЗН-В на поверхности аэродрома

УДК 629.7.016.2

DOI 10.51955/2312-1327_2024_4_93

Александр Петрович Плясовских

Артем Вадимович Копосов

Александра Александровна Катричева

Аннотация. В статье предлагается математическая модель подтверждения достоверности сообщений автоматического зависимого наблюдения радиовещательного типа (АЗН-В). Актуальность исследования обусловлена растущими требованиями к безопасности и надежности информационных систем, а также необходимостью обеспечения целостности и достоверности передаваемой информации в условиях современных угроз. В работе представлены основные компоненты модели, включая источники информации, каналы передачи данных и механизмы обнаружения ошибок. Предложенная модель описывает происходящие в системах АЗН-В процессы с учетом искусственных и естественных помех, влияющих на достоверность информации наблюдения, позволяет прогнозировать действия злоумышленников, пытающихся нарушить целостность систем АЗН-В, и прогнозировать поведение системы АЗН-В в условиях помех, обеспечивает возможность разработки эффективных методов подтверждения достоверности сообщений АЗН-В в районе аэродрома. Таким образом, представленная математическая модель подтверждения достоверности сообщений АЗН-В служит важным шагом к улучшению надежности информационных систем и защиты критически важной информации от несанкционированного доступа и искажений.

Ключевые слова: АЗН-В, разница времени, модель, подтверждение достоверности.

Скачать 858,1 kB

Анализ принципов обработки навигационной информации и построения рабочей зоны многопозиционной системы наблюдения

УДК 621.396.96

DOI 10.51955/2312-1327_2024_3_76

Дмитрий Юрьевич Урбанский

Аннотация. В последнее десятилетие наблюдается повышение объема пассажирских и грузовых авиаперевозок, что приводит к увеличению плотности воздушного движения. При этом ужесточаются требования к безопасности полетов, достижение которых возможно при помощи систем организации воздушного движения. В соответствии с рекомендациями ИКАО для повышения эффективности воздушных перевозок предлагается использовать современные средства наблюдения. Внедрение в Российской Федерации многопозиционной системы наблюдения (МПСН) на базе автоматического зависимого наблюдения вещательного типа (АЗН-В) направлено на реализацию государственных и региональных программ развития авиации, повышения безопасности полетов, качества аэронавигационного обеспечения системы организации воздушного движения. Поэтому анализ принципов построения рабочей зоны и обработки навигационной информации в многопозиционной системе наблюдения с целью повышения точности определения координат ВС является актуальной научно-исследовательской задачей. Рассмотрен подход повышения эффективности функционирования МПСН при обработке информации в условиях шумов и помех. Анализ результатов моделирования предложенного алгоритма на основе дискретного фильтра Калмана показывает высокую точность оценки плановых координат воздушного судна (ВС). Для автоматизации процесса расчета и построения рабочих зон многопозиционной системы наблюдения разработано специализированное программное обеспечение.

Ключевые слова: многопозиционная система наблюдения, технология мультилатерации, автоматическое зависимое наблюдение, фильтр Калмана, рабочая зона, местоположение, метод наименьших квадратов.

Скачать 1,5 MB

Оценка возможности реализации процесса наблюдения в региональных центрах системы организации воздушного движения Российской Федерации

УДК 621.396.96

DOI 10.51955/2312-1327_2024_2_96

Вячеслав Владимирович Ерохин

Борис Валентинович Лежанкин

Дмитрий Юрьевич Урбанский

Аннотация. Организация воздушного движения (ОрВД) в региональных центрах управления воздушным движением определяется наличием средств наблюдения, использующих радиолокационный принцип определения координат воздушных судов (ВС). Размеры областей пространства зон ответственности составляют обширные территории, на которых размещение радиолокационных средств наблюдения, образующих единое поле контроля, экономически нецелесообразно. Наличие локальных областей пространства, в которых наблюдение за воздушным движением не выполняется, существенно снижает безопасность, регулярность и эффективность полетов. Внедрение новых технологий, требующих значительно меньших экономических затрат, требует оценки возможности их применения в соответствующих региональных центрах ОрВД. Поэтому актуальной научной задачей является исследование возможности применения многопозиционных систем наблюдения (МПСН) в виде оценки точностных характеристик и мест размещения элементов системы. Полученные результаты исследований можно применить при размещении наземных станций МПСН для достижения высоких показателей эффективности функционирования системы наблюдения и организации воздушного движения в целом.

Ключевые слова: многопозиционная система наблюдения, мультилатерация, приемная станция, рабочая зона, местоположение.

Скачать 1,6 MB

Методика синтеза оптимальной по времени траектории полета беспилотного воздушного судна*

УДК 621.391:621.396        ББК 39.57-5

DOI 10.51955/2312-1327_2024_2_134

Олег Николаевич Скрыпник

Екатерина Викторовна Куриленко

Аннотация. В статье рассмотрены методика синтеза оптимальной траектории полета БВС и алгоритм системы управления полётом. Система и алгоритм разработаны для четырёхмерных (4D) операций на основе траекторий (TBO) в контексте концепций CNS/ATM и PBN, что позволит повысить операционную эффективность процессов навигации и пилотирования БВС. В работе представлена математическая модель объекта управления и алгоритмы формирования оптимальной по времени траектории полета. Также представлена оценка предложенной методики путем верификации и валидации программного обеспечения системы с помощью имитационного моделирования. Полученные результаты демонстрируют функциональные возможности системы управления по созданию оптимальных по времени профилей траекторий, удовлетворяющих эксплуатационным требованиям.

Ключевые слова: беспилотное воздушное судно (БВС), система управления, оптимальная траектория полета.

*Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант Т23-029).

Скачать 577,5 kB

Синтез алгоритма оценки параметров многопозиционной системы наблюдения и исследование эффекта расходимости процесса фильтрации

УДК 621.396.96

DOI 10.51955/2312-1327_2024_1_78

Вячеслав Владимирович Ерохин

Борис Валентинович Лежанкин

Дмитрий Юрьевич Урбанский

Аннотация. Точность измерения местоположения воздушных судов (ВС) напрямую влияет на безопасность полётов и является одной из важнейших тактических характеристик. Внедрение новых перспективных средств наблюдения, таких как многопозиционные системы наблюдения (МПСН), может значительно повысить уровень безопасности полётов, а также улучшить эффективность использования воздушного пространства. В статье рассматривается задача улучшения качества функционирования МПСН и повышения точности оценки координат воздушных судов (ВС). Точность определения местоположения определяется погрешностью измерения времени прихода сигнала в условиях влияния шумов и помех. Случайные возмущения необходимо учитывать для обеспечения качественной работы МПСН, что достигается путем применения методов Калмановской теории фильтрации. Поэтому для решения задачи оценивания переменных состояния МПСН предлагается использовать фильтр Калмана (ФК). Эффективность применения фильтра Калмана зависит от адекватности математических моделей и реальных процессов. Неточности моделей, связанные с функционированием навигационных систем, приводят к расходимости ФК. В работе приведены результаты теоретических исследований и имитационного моделирования процессов функционирования МПСН на основе реализации алгоритма ФК.

Ключевые слова: фильтр Калмана, расходимость процесса фильтрации, алгоритм оценивания, многопозиционная система наблюдения, случайные возмущения, воздушное судно.

Скачать 802,6 kB

Моделирование подтверждения данных АЗН-В с коррекцией температуры при оценке высоты полета на местных воздушных линиях (часть 2)

УДК 629.7.058.6 : 629.7.016.2

DOI 10.51955/2312-1327_2024_1_90

Андрей Сергеевич Калинцев

Аннотация. В первой части статьи была предложена модифицированная методика подтверждения данных АЗН-В, которая оценивает и сравнивает высоты полета воздушного судна: барометрическую (получаемую от барометрического высотомера) и геометрическую (получаемую от приемника ГНСС). В представленной работе выполнено моделирование применения модифицированной методики подтверждения данных геометрической высоты АЗН-В. При моделировании были использованы реальные данные, полученные от наземной станции АЗН-В, расположенной на аэродроме Мезень. Использованы реальные значения давления и температуры. Модифицированная методика учитывает значения показателей качества данных АЗН-В. Для одного полета МВЛ было показано превышение допустимого интервала (данные ГНСС, согласно методике, не подтверждены). Полученный результат согласуется с параметром геометрической вертикальной точности GVA. Для верификации модифицированной методики определения температуры по данным геометрической и барометрической высот, полученные данные температуры сравниваются со значениями модели прогнозирования ECMWF. Среднее значение RMSE для 11 рейсов составило 1,58ºС. Для ВС, набирающих высоту, максимальное значение RMSE составило 1,93ºС, для ВС, выполняющих посадку, максимальное RMSE = 2,7ºС.

Ключевые слова: безопасность полетов, АЗН-В, модель, местные воздушные линии, барометрическая высота, геометрическая высота, TAS, IAS.

Скачать 1,5 MB

Использование метода TDOA для подтверждения достоверности информации радиовещательного автоматического зависимого наблюдения

УДК 629.7.016.2

DOI 10.51955/2312-1327_2023_4_50

Александр Петрович Плясовских

Артем Вадимович Копосов

Владислав Юрьевич Давиденко

Аннотация. Представленная статья посвящена возможности использования метода Time Different Of Arrival (TDOA), который можно применить для подтверждения достоверности информации, поступающей от нескольких наземных станций автоматического зависимого наблюдения вещательного типа (АЗН-В). Целью работы является изучение метода TDOA и применение его для станций АЗН-В. Данный метод дает возможность использования АЗН-В как единственного средства наблюдения на аэродроме. На данный момент, согласно рекомендациям ИКАО, станции АЗН-В не допускается использовать в качестве самостоятельного средства наблюдения из-за проблем, связанных с возможностью искажения сигнала или же внесения заведомо ложной информации в сообщения, поэтому эксплуатация данного вида станций возможна только совместно с другими средствами наблюдения, такими как многопозиционные системы наблюдения (МПСН) или системы вторичной радиолокации (ВРЛ), что увеличивает стоимость организации наблюдения на летном поле. Таким образом, актуальность работы связана с необходимостью поиска альтернативного метода подтверждения достоверности сообщения АЗН-В.

Ключевые слова: радиовещательное автоматическое зависимое наблюдение, АЗН-В, подтверждение, спуфинг, гипербола, разница времени.

Скачать 965,4 kB

Модифицированная методика подтверждения данных АЗН-В с коррекцией температуры при оценке высоты полета (часть 1)

УДК 629.7.058.6 : 629.7.016.2

DOI 10.51955/2312-1327_2023_4_28

Андрей Сергеевич Калинцев

Аннотация. Международная организация гражданской авиации указывает на необходимость подтверждения данных АЗН-В. Сообщения АЗН-В включают информацию о горизонтальном и вертикальном местоположении. Информация о высоте воздушного судна в гражданской авиации имеет большое значение. В статье предложена модифицированная методика подтверждения данных АЗН-В при выполнении полетов на местных воздушных линиях, которая позволяет оценить и выполнить сравнение геометрической и барометрической высот полета воздушного судна, передаваемых в стандартном сообщении АЗН-В. Предлагаемая модификация методики заключается в коррекции значений температуры, использовании полной барометрической формулы Лапласа, учете параметров качества АЗН-В. При выполнении горизонтального полета и отсутствии данных наземного вектора скорости, коррекция температуры осуществляется с использованием передаваемых в сообщении АЗН-В воздушных скоростей (TAS, IAS). В методике используется максимально допустимая ошибка 90 м. Также предлагается определять температуру воздуха по данным геометрической и барометрической высот, передаваемым в стандартном сообщении АЗН-В.  Определение температуры воздуха на высотах предполагает использование данных АЗН-В от воздушных судов, выполнивших взлет. Для определения температуры по данным ВС, выполнивших посадку, необходима статистика данных от нескольких судов.

Ключевые слова: безопасность полетов, АЗН-В, температура, барометрическая высота, геометрическая высота, TAS, IAS.

Скачать 527,2 kB

Повышение пропускной способности аэродрома с использованием интегрированного менеджера прибытия/отправления воздушных судов (AMAN/DMAN)

УДК 351.814.33

DOI 10.51955/2312-1327_2023_3_30

Александр Юрьевич Княжский

Александр Петрович Плясовских

Александр Владимирович Тарасенко

Аннотация. В статье предложен метод повышения пропускной способности аэродрома и снижения средней задержки прибывающих/отправляющихся воздушных судов за счет оптимизации очереди из них, с учетом заданных минимально допустимых временных интервалов между воздушными судами, зависящих от их весовых категорий этапов движения (взлет/посадка). Проведен анализ эффективности данного метода, для оценки которой использовался поток событий (вылетов и прилетов), имеющий Пуассоновское распределение. Оценены зависимости средних задержек вылетов и прилетов от интенсивностей потоков вылетов и прилетов и потенциальная возможность возрастания пропускной способности аэродрома при использовании данного метода. Проведено сравнение эффективности системы управления вылетами при абсолютном приоритете у прилетающих ВС и одинаковом приоритете у прилетающих и вылетающих ВС. Показано, что интегрированный менеджер прибытия/отправления с одинаковым приоритетом у вылетающих и прилетающих ВС имеет большую эффективность, чем при абсолютном приоритете у прилетающих ВС.

Ключевые слова: AMAN, DMAN, управление воздушным движением, вылеты, прилеты, АС УВД, пропускная способность.

Скачать 564,2 kB

О наглядном геометрическом представлении движения материальной точки в пространстве и времени на примере воздушного движения

УДК 351.814.33 ББК 39.57

DOI 10.51955/2312-1327_2021_1_6

Александр Петрович Плясовских

Аннотация. В работе изложен новый, оригинальный метод наглядного геометрического представления движения материальной точки (или воздушного судна) в пространстве и времени. Актуальность предлагаемого метода обусловлена недостатками традиционного метода представления движения в пространстве-времени, одной из координат которого является независимое от пространственных координат время. В таком пространстве-времени не определено понятие расстояния между двумя его точками, не определены понятия угла, треугольника, геометрических фигур, в нем невозможно использовать евклидову геометрию. Автор предлагает использование четырёхмерного евклидова пространства с четвертой осью z = bt, где b – постоянная скорости, t – время, для представления движения материальной точки (воздушного судна) в пространстве и времени. Движение материальной точки (воздушного судна), представленное с использованием предложенного автором пространства, является наглядным, линия движения имеет геометрический смысл линии евклидовой геометрии. Приведены примеры представления четырёхмерного движения воздушного судна по участку маршрута, понятие четырёхмерного коридора движения воздушного судна. Показана возможность использования предлагаемого метода для описания и исследования движения материальной точки (воздушного судна) в пространстве и времени. Метод открывает новое направление исследований движения материальных точек и других материальных объектов в пространстве и времени с использованием многомерной и, в частности, четырёхмерной геометрии. Значение предлагаемого в статье подхода состоит в том, что он открывает новые направления научных исследований в таких науках как физика (не релятивистская механика), навигация и управление воздушным движением, космическая механика, и во многих других науках, где исследуются процессы движения различных объектов в пространстве и времени. Автор планирует в дальнейшем продолжить публикацию полученных с использованием предложенного метода результатов, которые не вошли в данную работу из-за ограничений по объему статьи.

Ключевые слова: управление воздушным движением, 4D траектория, 4D пространство, материальная точка, многомерная геометрия, пространство-время.

Скачать 914,2 kB

« Older Entries