ΠšΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡ: 2.9. Transport systems

Development of a conflict detection and resolution methodololy used in the operational flight 4D-trajectory planning

DOI 10.51955/2312-1327_2024_2_77

Nguyen Thi Linh Phuong

Evgeny S. Neretin

Nguyen Nhu Man

Abstract. Conflict detection and resolution is one of the key tasks in ensuring the safety and efficiency of air transport. In Trajectory Based Operation (TBO), aircraft are given greater flexibility in planning trajectories along the route and greater responsibility for self-separation from each other, so the pilot will need assistance to safely and efficiently perform the task of decentralized conflict resolution during the en-route flight. In this work, we develop a method for identifying and resolving conflict situations in cruising phase based on four-dimensional grid nodes (4D-grid) and the A-star shortest path search algorithm (A* for short) to form an optimal four-dimensional trajectory (4D-trajectory) bypass all airspace obstacles. This new approach helps to avoid false warnings about potential conflicts due to the ability to early detect them and accurately determine the distance from aircraft to areas of dangerous proximity (prohibited zones (PZ), zones of bad weather, other aircraft) and then autonomously form a time-spatial trajectory to bypass them. In order to demonstrate the effectiveness of the proposed method, we conduct three experiments in different airspace conditions (with and without the areas of dangerous proximity). The results of the experiments prove that potential dangerous proximities of aircraft in flight are effectively identified and resolved using the proposed methodology.

Keywords: Conflict detection and resolution, self-separation, 4D trajectory, 4D-grid, algorithm A*.

Download article in PDF 895.7 kB

Investigation of the influence of acting loads on microstructural changes in the alloy Inconel 738LC

DOI 10.51955/2312-1327_2024_2_51

Oleg A. Ratenko

Elizaveta V. Samojlenko

Yurij V. Petrov

Abstract. In modern economic conditions, one of the important tasks is to transfer as many structural elements of aircraft engines as possible to condition-based operation while maintaining a balance between the economic effect and the flight safety level. Such measures will significantly allow aircraft operators to reduce operating costs. One of the candidates for the transition to condition-based operation are turbine blades of gas turbine engines, made from heat-resistant nickel alloys. The microstructure of the heat-resistant nickel alloys is a Ξ³-matrix with dispersed particles of the Ξ³’-phase included into it, which are the elements that provide the high strength properties of nickel alloys. The microstructural changes that occur during the operation of gas turbine engines in turbine blades associated with an increase in the size and shape of the Ξ³’-phase particles, as well as their volume fraction, lead to degradation of the mechanical properties of products. Taking into account these changes can be a tool that will allow one to carry out calculations aimed at assessing the technical condition of the blades of gas turbine engines during their operation.

Key words: gas turbine engine, turbine blade, heat-resistant nickel alloy, Ξ³’-phase, alloy microstructure.

Download article in PDF 732.0 kB

Aircraft flight safety management system with a basic built-in system of automatic tolerance control of the hydraulic system and failure monitoring and forecasting systems

DOIΒ 10.51955/2312-1327_2024_2_36

Mihail A Bobrin

Abstract. This paper considers an integrated tolerance control system with failure monitoring and prediction subsystems for aircraft safety management system (ASMS), which is relevant nowadays. The paper deals with the operational component of hydraulic system (HS) tolerance zones. The internal measured parameter is pressure, so it was necessary to find an algorithm that reflects its dependence on operating conditions, its coefficient of kinematic viscosity of the fluid, its temperature, operating time, ambient temperature and flight stage. The operational component of the tolerance zone can be derived from the obtained expression for the pressure by substituting the boundary values of the parameters included in this dependence.

While polling the sensors of the automatic control system it is necessary each time to calculate the range of variation of the parameter for the given stage of flight and other conditions with the help of algorithms for calculating the tolerance zone obtained in the paper. Moreover, the control system has to process a large amount of information using artificial intelligence (AI) methods which allows the safety of aircraft flight (SAF) to be managed.

Keywords: aircraft health management system, aircraft flight safety management system, automatic control system of aircraft hydraulic systems, operational pressure-tolerant zone.

Download article in PDF 799.4 kB

On the need and possibility of reducing the impact of noise in order to minimize injuries at airlines

DOIΒ 10.51955/2312-1327_2024_2_6

Evgeniy Yu. Starkov

Nikolay I. Nikolaykin

Elena Ed. Sigaleva

Lilia Yu. Marchenko

Igor N. Merzlikin

Natalia V. Degterenkova

Galina P. Stepanova

Abstract. Summary data on injuries in Russia and at civil aviation enterprises over the years of the current century are presented. Continuous reduction in injury rates has been shown. Significant actual factors of the working environment that contribute to occupational injuries have been statistically identified, one of the main ones being noisy workplaces. Exposure to noise has a negative impact on hearing and the functional state of the central nervous system thus reducing performance, leading to errors, and contributing to injuries. The possibility to counter the noise effects by otoprotection with an argon-oxygen gas mixture has been experimentally confirmed.

Keywords: injuries, noisy workplaces, human factor, civil aviation enterprises, otoprotection, argon.

Download article in PDF 1.1 MB

Methodological support for the implementation of international flight safety standards in russian civil aviation

DOI 10.51955/2312-1327_2024_1_37

Anatoly G. Guziy

Anastasia A. Shpakovskaya

Alexey S. Muravyov

Abstract. The present paper delves into the challenge of implementing international flight safety standards into the Russian regulatory framework governing the establishment, application, and refinement of aviation safety management systems (SMS) in the civil aviation sector in Russia. It underscores the reliance of SMS regulatory adherence on the Standards and Recommended Practices (SARPs) set forth by the International Civil Aviation Organization (ICAO). The paper conducts an examination of prevailing discrepancies, indeterminacies, and ambiguities in delineating core terms and concepts within the English and Russian renditions of ICAO SARPs documentation. Furthermore, it offers an evaluation of the implementation hurdles associated with SARPs in regulatory documentation pertaining to civil aviation flight safety in Russia. The deficiencies in the regulatory infrastructure for flight safety in Russia are substantiated. Drawing from practical insights gained in formulating and improving regulatory and methodological support for SMS in prominent Russian airlines, the paper proposes measures to mitigate inaccuracies and uncertainties in the integration of ICAO SARPs editions within the Russian regulatory framework for aviation industry service providers.

Keywords: international standards, regulatory support, implementation, methodological support, aviation safety, risk, factors.

Download article in PDF 462.0 kB

Method for predicting the probability of dangerous gusts of wind in the runway area when landing an aircraft

DOIΒ 10.51955/2312-1327_2024_1_57

Vitalii D. Rubtsov

Elena I. Trusova

Alexandra L. Rybalkina

Abstract. The authors propose a method of predicting the probability of occurrence of dangerous gusts of wind in the runway area during landing of an aircraft, based on the use of the distribution of absolute maximum wind gusts during the observation period. The method makes it possible to design an aircraft landing system that allows, depending on the probability of wind gusts, to make various management decisions: permission to land, sending the aircraft on a go-around, or sending it to an alternate airfield.

Keywords: gusts of wind, probabilistic description, flight safety, aircraft, theory of emissions of random processes, recording device on a probing beam.

Download article in PDF 892.5 kB

Synthesis of an algorithm for estimating parameters of a multiposition surveillance system and research of filtering divergence

DOI 10.51955/2312-1327_2024_1_78

Vyacheslav V. Erokhin

Boris V. Lezhankin

Dmitry Y. Urbansky

Abstract. The accuracy of aircraft position measurements directly affects flight safety and is one of the most important tactical characteristics. The introduction of new advanced surveillance tools, such as multi-position surveillance systems (MPSS), can significantly increase the level of flight safety, as well as improve the efficiency of airspace use. The authors consider the task of improving the quality of MPSS functioning and increasing the accuracy of estimating the aircraft coordinates. The accuracy of position-fixing is determined by the error in measuring the time of signal arrival under the influence of noise and interference. Random disturbances must be taken into account to ensure high-quality MPSS operation. This is achieved by applying the methods of Kalman filtration theory. Therefore, to solve the problem of estimating the MPSS state variables, it is proposed to use a Kalman filter (KF). The effectiveness of using the Kalman filter depends on the adequacy of mathematical models and real processes. Model inaccuracies associated with the functioning of navigation systems lead to KF divergence. The paper presents the results of theoretical studies and simulating the MPSS functioning processes based on the implementation of the KF algorithm.

Keywords: Kalman filter, divergence of the filtering process, estimation algorithm, multi-position surveillance system, random disturbances, aircraft.

Download article in PDF 802.6 kB

Control of the flight path of an unmanned aerial vehicle with different configurations of navigation information sources

DOI 10.51955/2312-1327_2024_1_113

Boris V. Lezhankin

Vyacheslav V. Erokhin

Nikolay P. Malisov

Abstract. In real conditions of application for high-precision positioning and trajectory control of unmanned aerial vehicles (UAVs) when flying along a route, insufficient noise immunity and operating accuracy of satellite navigation system receivers are manifested. In this regard, it is relevant to study possible methods and means of providing high-precision navigation definitions based on complex processing of signals from various sources of navigation information when solving the problem of displaying a UAV in a terminal set.

The article presents the results of developing a UAV trajectory control algorithm based on methods of statistical optimal control theory, the implementation of which will improve the accuracy of maintaining a given flight route. The characteristics for analyzing errors in maintaining the flight path are considered.

The results of modeling and research of the characteristics of the trajectory control algorithm for various configurations of navigation information sources (NIS) are presented and the dependence of the accuracy of maintaining a given UAV flight route on errors in estimating navigation parameters is shown.

Keywords: trajectory control, unmanned aerial vehicle, Letov-Kalman algorithm, sources of navigation information, automatic dependent surveillance.

Download article in PDF 965.8 kB

Simulation of ADS-B data confirmation with temperature correction when estimating flight altitude on local air lines (part 2)

DOI 10.51955/2312-1327_2024_1_90

Andrey S. Kalintsev

Abstract. In the first part of the article, the author proposed a modified method for confirming the ADS-B data, which estimates and compares the aircraft flight altitude: barometric altitude (received from a barometric pressure altimeter) and geometric altitude (received from a GNSS receiver). In the presented work, application of the modified technique for confirming the ADS-B geometric altitude data is simulated. When simulating, real data were used which were received from the ADS-B ground station located at the Mezen aerodrome. Real values of pressure and temperature were used. The methodology takes into account the values of quality indicators of ADS-B data. For one flight on local airlines, an excess of the permissible interval was shown (GNSS data, according to the methodology, are not confirmed). The result obtained is consistent with the geometric vertical accuracy parameter GVA. To verify the modified method of the temperature determination according to geometric and barometric altitude, the obtained temperature data are compared with the values of the ECMWF forecasting model. The average RMSE value for 11 flights was 1.58ΒΊΠ‘. For climbing aircraft the maximum RMSE value was 1.93ΒΊΠ‘, for landing aircraft, maximum RMSE = 2.7Β°C.

Key words: flight safety, ADS-B, model, local airlines, barometric altitude, geometric altitude, TAS, IAS.

Download article in PDF 1.5 MB

Sensory and intersensory model of the pilot – aircraft system

DOI 10.51955/2312-1327_2024_1_67

Gennady V. Kovalenko

Artem A. Fedorov

Andrey V. Fedorov

Abstract. The paper provides an overview of the components of the pilot model used to design the flight control system which focuses on the physiological aspects and aspects of manual control. The structure of a multi-element system is used which allows the authors to reveal the totality of interaction between the pilot and the aircraft during the implementation of manual control. Manual control is the most difficult process when performing an aircraft flight and requires a lot of experience and high pilot skills. The sensory and intersensory models of the pilot–aircraft system are considered. The application of these models requires knowledge of the mechanisms and processes that are directly involved in the development of the pilot’s spatial orientation when controlling the aircraft manually. The development of a method and a mathematical model for the formation of spatial orientation skills is an urgent task of scientific research.

Keywords: pilot, model, spatial disorientation, aircraft, sensory organs, human factor.

Download article in PDF 547.8 kB

« Older Entries Recent Entries »